Abstract

Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where both strict complementarity and the Mangasarian-Fromovitz constraint qualification do not hold. The constraints on the stabilization parameter are relaxed, and linear convergence is demonstrated when the parameter is kept fixed. We show that the analysis of this method can be carried out using recent results for the stability of variational problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.