Abstract

Combining the norm-relaxed sequential quadratic programming (SQP) method and the idea of method of quasi-strongly sub-feasible directions (MQSSFD) with active set identification technique, a new SQP algorithm for solving nonlinear inequality constrained optimization is proposed. Unlike the previous work, at each iteration of the proposed algorithm, the norm-relaxed quadratic programming (QP) subproblem only consists of the constraints corresponding to an active identification set. Moreover, the high-order correction direction (used to avoid the Maratos effect) is yielded by solving a system of linear equations (SLE) which also includes only the constraints and their gradients corresponding to the active identification set, therefore, the scale and the computation cost of the high-order correction directions are further decreased. The arc search in our algorithm can effectively combine the initialization processes with the optimization processes, and the iteration points can get into the feasible set after a finite number of iterations. Furthermore, the arc search conditions are weaker than the previous work, and the computation cost is further reduced. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ). If the strong second-order sufficient conditions are satisfied, then the active constraints are exactly identified by the identification set. Without the strict complementarity, superlinear convergence can be obtained. Finally, some elementary numerical results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.