Abstract
A stabilized finite-element method for the two-dimensional stationary incompressible Navier-Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of the Q1−P0 quadrilateral element and the P1−P0 triangular element are established. Moreover, the well-posedness and the optimal error estimate of the stabilized finite-element method for the stationary Navier-Stokes equations are obtained. Finally, some numerical tests to confirm the theoretical results of the stabilized finite-element method are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.