Abstract
This work presents the formulation and analysis of a H1− conforming mixed virtual element method (VEM) for the two-dimensional stationary incompressible Navier-Stokes (NS) equations in stream-function formulation. By representing the velocity field as the curl of a stream function, we recast the second-order NS system into a fourth-order nonlinear equation for the scalar stream function, inherently satisfying the incompressibility constraint. Introducing a vorticity variable enables construction of H1− conforming VEM spaces for both stream function and vorticity and circumventing stringent C1− continuity constraints. The proposed method provides an initial exploration of stream function-vorticity discretizations on general polygonal meshes using the flexible VEM of arbitrary order. Existence and uniqueness of discrete solutions are established theoretically under a small data assumption. Optimal error estimates are then derived in the energy norm for the stream function, H1− norm for the stream function and L2− norm for the vorticity, rigorously demonstrating convergence. Numerical results validate the error analysis and illustrate the accuracy and robustness of the mixed VEM for simulation of incompressible flows on complex geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.