Abstract

By pyrolytic decomposition of silane in the presence of dopant gases, a set of amorphous silicon films was prepared that contains various concentrations of carbon, nitrogen, boron or germanium. The effect of these dopants on the crystallization process and the optical properties is investigated. Films containing aböut 18 at % carbon show the properties most favorable for solar absorbers. The crystallization is retarded to temperatures near 1000°C, and the solar absorptance is greater than that of non-intentionally doped CVD amorphous silicon. From the experimentally determined activation energy of crystallization, the structural lifetime for such absorber films is extrapolated to be in excess of several decades for continuous operation at 700°C. For identical thicknesses of absorber layers, spectrally selective stacks of stabilized amorphous silicon deposited on top of a molybdenum reflector have higher solar absorptance than stacks composed of polycrystalline silicon on a silver reflector, amorphous silicon on molybdenum having been tested at temperatures in excess of 500°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call