Abstract

The collision-generated hybridization which has been found responsible for the on-site mixing of the atomic-likef-state and the band-liked states in mixed valence solids has been studied for the cerium solid. A practical expression which depends on the lattice constant and temperature has been obtained for the collision-generated hybridization. Numerical calculations show that the valence varies continuously with lattice constant and that temperature makes the transition smoother. The collision-generated hybridization is found to be of significant strength in the intermediate valence regime; but over a wide range of the valence near 3.5 it varies rather slowly without preferring a particular valence. Factors which can assist the collision-generated hybridization in stabilizing the mixed valence phase at a particular lattice constant are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.