Abstract

Gimbal is a system that provides locking and tracking of the seeker on the target in missiles and increases the angle of view with its mobility in two axes. In this study, stabilization of a two-axis gimbal system used in the missile was carried out. In gimbal stabilization, adaptive controllers are preferred instead of classical controllers due to unbalance, cross-coupling, and unmeasurable disturbances. A Self Tuning PID controller based on Fuzzy Logic was developed for axis controls in the stabilization algorithm. Thanks to this controller, which works with the principle of choosing the most appropriate coefficient at every step, it was possible to control with less than 3% errors in the tests performed with the flight simulator. In addition, a PID controller whose coefficients are optimized with Particle Swarm Optimization is designed for comparison purposes. In experimental studies, it was seen that PID with adjustable coefficients gave better results than the fixed PID.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.