Abstract

We consider a damped plate equation on an open bounded subset of ℝ d , or a smooth manifold, with boundary, along with general boundary operators fulfilling the Lopatinskiĭ-Šapiro condition. The damping term acts on an internal region without imposing any geometrical condition. We derive a resolvent estimate for the generator of the damped plate semigroup that yields a logarithmic decay of the energy of the solution to the plate equation. The resolvent estimate is a consequence of a Carleman inequality obtained for the bi-Laplace operator involving a spectral parameter under the considered boundary conditions. The derivation goes first through microlocal estimates, then local estimates, and finally a global estimate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.