Abstract
The stabilization of stochastic differential equations driven by Brownian motion (G-Brownian motion) with discrete-time feedback controls under Lipschitz conditions has been discussed by several authors. In this paper, we first give the sufficient condition for the mean square exponential instability of stochastic differential equations driven by G-Levy process with non-Lipschitz coefficients. Second, we design a discrete-time feedback control in the drift part and obtain the mean square exponential stability and quasi-sure exponential stability for the controlled systems. At last, we give an example to verify the obtained theory.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have