Abstract

Type II multiferroics possess the highest magnetoelectric coupling among single phase multiferroics due to the relation between the spin order and the ferroelectric polarization. However, these materials tend to exhibit magnetoelectric coupling at temperatures lower than room temperature which limits their applications. In recent years the Y-type hexaferrites have been studied due to the tunability of its magnetic structure which enables to stabilize its magnetoelectric phases up to room temperature. In the present work, the effects of Ni2+ doping in BaSrCo2-xNixFe11AlO22, with x varying from 0 to 1.5, Δx = 0.5, are studied. Temperature scan of the magnetic properties and hysteresis loops confirm that Ni2+ concentration reduces magnetization and, stabilizes the spin driven ferroelectric phases. Magnetic behavior and magnetodielectric measurements allow identifying that the samples with x of 1.0 and 1.5 mol of Ni2+ exhibit room temperature spin driven electric polarization. In addition, XRD Rietveld refinement shows a reduction of the a/b and c cell parameters while the T-S boundary through the Fe8–O9 bond is stretched, which may be attributed to the stability of the spin driven ferroelectric phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call