Abstract
This paper investigates the problem of stabilization of networked control systems via dynamic output-feedback controllers. The physical plant and the dynamic controller are in continuous time, and a communication channel exists between the output of the physical plant and the input of the dynamic controller. Three important communication features are considered: measurement quantization, signal transmission delay, and data packet dropout, which appear typically in a networked environment. Attention is focused on the design of dynamic output-feedback controllers which ensure asymptotic stability of the closed-loop systems. Linear matrix inequality (LMI)-based conditions are formulated for the existence of admissible controllers. If these conditions are satisfied, a desired controller can be readily constructed. A satellite system is used to illustrate the applicability and effectiveness of the proposed controller design method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.