Abstract
1. Yaw eye in head (Eh) and head on body velocities (Hb) were measured in two monkeys that ran around the perimeter of a circular platform in darkness. The platform was stationary or could be counterrotated to reduce body velocity in space (Bs) while increasing gait velocity on the platform (Bp). The animals were also rotated while seated in a primate chair at eccentric locations to provide linear and angular accelerations similar to those experienced while running. 2. Both animals had head and eye nystagmus while running in darkness during which slow phase gaze velocity on the body (Gb) partially compensated for body velocity in space (Bs). The eyes, driven by the vestibuloocular reflex (VOR), supplied high-frequency characteristics, bringing Gb up to compensatory levels at the beginning and end of the slow phases. The head provided substantial gaze compensation during the slow phases, probably through the vestibulocollic reflex (VCR). Synchronous eye and head quick phases moved gaze in the direction of running. Head movements occurred consistently only when animals were running. This indicates that active body and limb motion may be essential for inducing the head-eye gaze synergy. 3. Gaze compensation was good when running in both directions in one animal and in one direction in the other animal. The animals had long VOR time constants in these directions. The VOR time constant was short to one side in one animal, and it had poor gaze compensation in this direction. Postlocomotory nystagmus was weaker after running in directions with a long VOR time constant than when the animals were passively rotated in darkness. We infer that velocity storage in the vestibular system had been activated to produce continuous Eh and Hb during running and to counteract postrotatory afterresponses. 4. Continuous compensatory gaze nystagmus was not produced by passive eccentric rotation with the head stabilized or free. This indicates that an aspect of active locomotion, most likely somatosensory feedback, was responsible for activating velocity storage. 5. Nystagmus was compared when an animal ran in darkness and in light. the beat frequency of eye and head nystagmus was lower, and the quick phases were larger in darkness. The duration of head and eye quick phases covaried. Eye quick phases were larger when animals ran in darkness than when they were passively rotated. The maximum velocity and duration of eye quick phases were the same in both conditions. 6. The platform was counterrotated under one monkey in darkness while it ran in the direction of its long vestibular time constant.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.