Abstract
The high interfacial resistance and lithium (Li) dendrite growth are two major challenges for solid-state Li batteries (SSLBs). The lack of understanding on the correlations between electronic conductivity and Li dendrite formation limits the success of SSLBs. Here, by diluting the electronic conductor from the interphase to bulk Li during annealing of the aluminium nitride (AlN) interlayer, we changed the interphase from mixed ionic/electronic conductive to solely ionic conductive, and from lithiophilic to lithiophobic to fundamentally understand the correlation among electronic conductivity, Li dendrite, and interfacial resistance. During the conversion-alloy reaction between AlN and Li, the lithiophilic and electronic conductive LixAl diffused into Li, forming a compact lithiophobic and ionic conductive Li3N, which achieved an ultrahigh critical current density of 2.6/14.0 mA/cm2 in the time/capacity-constant mode, respectively. The fundamental understanding on the effect of interphase nature on interfacial resistance and Li dendrite suppression will provide guidelines for designing high-performance SSLBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.