Abstract

<abstract><p>The stabilization of discrete-time positive switched Takagi-Sugeno (T-S) fuzzy systems with actuator saturation is investigated in this paper. It is assumed that the switched subsystems are partially stabilizable. Based on the convex hull technique (CHT) and parallel distribution compensation (PDC) algorithm, a saturated fuzzy controller and slow-fast combined mode-dependent average dwell time (MDADT) switching signal are co-designed and sufficient conditions for the positivity and stability of closed-loop positive switched T-S fuzzy systems (PSTSFSs) are developed, which can be reduced to the ones under the case where all switched subsystems are stabilizable. Moreover, the largest attraction domain estimation (ADE) is given for PSTSFSs by formulating an optimization problem. Finally, the designed control scheme is applied to two illustrative examples to verify its availability and superiority.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call