Abstract
Introduction of well-packed residues to the interior of a protein structure could be considered as a stabilization strategy since the reduction of buried cavities might stabilize protein structure. In this study, the less-packed residues with no water-contact were selected as target sites for increasing residual packing. When Lipase A from Bacillus subtilis (179 amino acids) was used as a model system, 43 less-packed residues were initially considered by analyzing their residual packing value and residual exposure ratio. Among the 43 residues, small amino acids such as GLY and ALA were chosen as target sites. Packing increases of ALA to VAL and GLY to ALA were estimated, by molecular modeling, to give 0.5368∼0.7433 kcal mol−1 stabilization. Mutants of Lipase A such as A38V, A75V, G80A, A105V A146V, and G172A were obtained via protein engineering. Thermostability assays revealed that A38V, G80A and G172V were the most stable mutants. This procedure for selecting the target residues for improved thermostability of Lipase A could be applied for improving the thermostability of other proteins and enzymes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have