Abstract

SUMMARY We describe a technique for the stabilization of a 2R robot moving in the horizontal plane with a single actuator at the base, an interesting example of underactuated mechanical system that is not smoothly stabilizable. The proposed method is based on a recently introduced iterative steering paradigm, which prescribes the repeated application of an error contracting open-loop control law. In order to compute e$ciently such a law, the dynamic equations of the robot are transformed via partial feedback linearization and nilpotent approximation. Simulation and experimental results are presented for a laboratory prototype. Copyright ( 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.