Abstract
<p style='text-indent:20px;'>This paper focuses on the <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>th moment and almost sure stability with general decay rate (including exponential decay, polynomial decay, and logarithmic decay) of highly nonlinear hybrid neutral stochastic pantograph differential equations driven by L<inline-formula><tex-math id="M3">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula>vy noise (NSPDEs-LN). The crucial techniques used are the Lyapunov functions and the nonnegative semi-martingale convergence theorem. Simultaneously, the diffusion operators are permitted to be controlled by several additional functions with time-varying coefficients, which can be applied to a broad class of the non-autonomous hybrid NSPDEs-LN with highly nonlinear coefficients. Besides, <inline-formula><tex-math id="M4">\begin{document}$ H_\infty $\end{document}</tex-math></inline-formula> stability and the almost sure asymptotic stability are also concerned. Finally, two examples are offered to illustrate the validity of the obtained theory.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.