Abstract

<abstract><p>Few results seem to be known about the stability with general decay rate of nonlinear neutral stochastic function differential equations driven by $ G $-Brownain motion ($ G $-NSFDEs in short). This paper focuses on the $ G $-NSFDEs, and the coefficients of these considered $ G $-NSFDEs can be allowed to be nonlinear. It is first proved the existence and uniqueness of the global solution of a $ G $-NSFDE. It is then obtained the trivial solution of the $ G $-NSFDE is mean square stable with general decay rate (including the trivial solution of the $ G $-NSFDE is mean square exponentially stable and the trivial solution of the $ G $-NSFDE is mean square polynomially stable) by $ G $-Lyapunov functions technique. In this paper, auxiliary functions are used to dominate the Lyapunov function and the diffusion operator. Finally, an example is presented to illustrate the obtained theory.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.