Abstract

In this article we consider a one-dimensional reaction-diffusion problem with mixed boundary conditions. We provide conditions for the existence or nonexistence of stable nonconstant solutions whose derivative vanishes at some point. As an application, we obtain similar results for problems with Dirichlet boundary conditions posed in some symmetric domains: an n-dimensional ball, surfaces of revolution, and model manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.