Abstract

Turing's model of pattern formation has been extensively studied analytically and numerically, and there is recent experimental evidence that it may apply in certain chemical systems. The model is based on the assumption that all reacting species obey the same type of boundary condition pointwise on the boundary. We call these scalar boundary conditions. Here we study mixed or nonscalar boundary conditions, under which different species satisfy different boundary conditions at any point on the boundary, and show that qualitatively new phenomena arise in this case. For example, we show that there may be multiple solutions at arbitrarily small lengths under mixed boundary conditions, whereas the solution is unique under homogeneous scalar boundary conditions. Moreover, even when the same solution exists under scalar and mixed boundary conditions, its stability may be different in the two cases. We also show that mixed boundary conditions can reduce the sensitivity of patterns to domain changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call