Abstract
Model predictive control (MPC) based on long prediction horizons can address the inherent non-minimum phase (NMP) behavior issue of DC/DC boost converters. However, the response time of the controller will increase since the long prediction horizons result in a high computational burden. To solve this problem, a non-minimum phase behavior improving (NPI) MPC with a single prediction horizon is proposed in this paper. Firstly, the actual cause behind the NMP behavior is analyzed. Afterward, the difference equation is modified according to the analysis and then used in the NPI-MPC. In addition, a fixed switching frequency is generated based on the value of the duty cycle, which is realized in the NPI-MPC algorithm and a modulation. Moreover, a weighting factors-design guideline based on the stability criterion of a Jacobian matrix is provided. It effectively reflects the impact and sensitivity of different weighting factors on stability. Finally, we conclude this paper by validating the proposed NPI-MPC method and the weighting factors-design guidelines with the results obtained under experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.