Abstract

Bat inspired algorithm (BIA) has recently been explored to develop a novel algorithm for distributed optimization and control. In this paper, BIA-based design of model predictive controllers (MPCs) is proposed for load frequency control (LFC) to enhance the damping of oscillations in power systems. The proposed model predictive load frequency controllers are termed as MPLFCs. Two-area hydro-thermal system, equipped with MPLFCs, is considered to accomplish this study. The suggested power system model considers generation rate constraint (GRC) and governor dead band (GDB). Time delays imposed to the power system by governor-turbine, thermodynamic process, and communication channels are accounted for as well. BIA is utilized to search for optimal controller parameters by minimizing a candidate time-domain based objective function. The performance of the proposed controller has been compared to those of the conventional PI controller based on integral square error (ISE) technique and the PI controller optimized by genetic algorithms (GA), in order to demonstrate the superior efficiency of the BIA-based MPLFCs. Simulation results emphasis on the better performance of the proposed MPLFCs compared to conventional and GA-based PI controllers over a wide range of operating conditions and system parameters uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.