Abstract

Electron energy-loss spectroscopy and high-resolution transmission electron microscopy were used to investigate ZrO2 layers grown by electron-beam evaporation in a molecular-beam epitaxy system. ZrO2/Si layers were investigated before and after uncapped annealing at 1000 °C under different oxygen partial pressures. The thickness of a SiO2-like, low-dielectric constant layer at the silicon interface was found to depend on the oxygen partial pressure during annealing. At oxygen partial pressures of about 10−4 torr the interfacial silicon oxide thickness increased through oxygen diffusion through the ZrO2 layer and silicon consumption at the interface. At oxygen partial pressures in the range of approximately 10−5 torr, only a thin (1 nm) interfacial silicon oxide layer was present, as required for low-equivalent oxide thicknesses of gate stacks incorporating alternative oxides. Further reduction of the oxygen partial pressures (about 10−7 torr) during annealing resulted in zirconium silicide formation at the interface. ZrO2 films annealed at the optimal partial pressure for a thin interfacial oxide were found to crystallize and contain no silicon. High-resolution analytical capabilities afforded by scanning transmission electron microscopy techniques proved essential in analyzing the stability of these ultrathin layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.