Abstract
The stability of steady inviscid vortex pairs in equilibrium with a circular cylinder is studied by discretizing equations derived from contour dynamics. There are two families of vortices, one with a pair of counter-rotating vortices standing behind the cylinder, which may be thought of as desingularizing the Foppl point vortices, and the other with the vortices standing directly above and below the cylinder. Vortices in the first family are found to be neutrally stable with respect to symmetric perturbations. When asymmetric perturbations are included, there is a single unstable mode and a single asymptotically stable mode. Vortices above and below the cylinder have two modes of instability, one symmetric and the other asymmetric, and likewise two asymptotically stable modes.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have