Abstract

We study supersonic flow past a convex corner which is surrounded by quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a strong rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to separate the supersonic flow behind the rarefaction wave from the static gas. In this paper, we employ a wave front tracking method to establish structural stability of such a flow pattern under non-smooth perturbations of the upcoming supersonic flow. It is an initial-value/free-boundary problem for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful analysis of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the strong rarefaction wave has a large total variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.