Abstract

The quadratic functional equation$$ f\left( {x + y} \right) + f\left( {x - y} \right) - 2f\left( x \right) - 2f\left( y \right) = 0$$ (3.1) clearly has f(x) = cx 2 as a solution with c an arbitrary constant when f is a real function of a real variable. We define any solution of (3.1) to be a quadratic function, even in more general contexts. We shall be interested in functions f: E 1 → E 2 where both E 1 and E 2 are real vector spaces, and we need a few facts concerning the relation between a quadratic function and a biadditive function sometimes called its polar. This relation is explained in Proposition 1, p. 166, of the book by J. Aczél and J. Dhombres (1989) for the case where E 2 = R, but the same proof holds for functions f: E 1 → E 2. It follows then that f: E 1 → E 2 is quadratic if and only if there exists a unique symmetric function B: E 1 × E 1 → E 2, additive in x for fixed y, such that f (x) = B(x, x). The biadditive function B, the polar of f, is given by$$B\left( {x,y} \right) = \left( {\begin{array}{*{20}{c}} 1 \\ - \\ 4 \end{array}} \right)\left( {f\left( {x + y} \right) - f\left( {x - y} \right)} \right)$$

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.