Abstract
Let G, H be uniquely 2-divisible Abelian groups. We study the solutions f, g: G → H of Pexider type functional equation (*) $$f(x+y)+f(x-y)+g(x+y)=2f(x)+2f(y)+g(x)+g(y),$$ resulting from summing up the well known quadratic functional equation and additive Cauchy functional equation side by side. We show that modulo a constant equation (*) forces f to be a quadratic function, and g to be an additive one (alienation phenomenon). Moreover, some stability result for equation (*) is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.