Abstract
We study the linear problem on the stability of rotation of a dynamically symmetric satellite about the normal to the plane of the orbit of its center of mass. The orbit is assumed to be elliptic, and the orbit eccentricity is arbitrary. We assume that the Hamiltonian contains a small parameter characterizing the deviation of the satellite central ellipsoid of inertia from the sphere. This is a resonance problem, since if the small parameter is zero, then one of the frequencies of small oscillations of the symmetry axis in a neighborhood of the unperturbed rotation of the satellite about the center of mass is exactly equal to the frequency of the satellite revolution in the orbit. We indicate a countable set of values of the angular velocity of the unperturbed rotation for which the resonance is even double. The stability and instability domains are obtained in the first approximation with respect to the small parameter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have