Abstract

Glyme-based electrolytes were studied for the use in lithium-air batteries because of their greater stability towards oxygen reduction reaction intermediates (e.g., superoxide anion radicals (O2˙(-))) produced upon discharge at the cathode compared to previously employed carbonate-based electrolytes. However, contradictory results of glyme stability tests employing KO2 as an O2˙(-) source were reported in the literature. For clarification, we investigated the reaction of KO2 with glymes of various chain lengths qualitatively using (1)H NMR and FTIR spectroscopy as well as more quantitatively using UV-Vis spectroscopy. During our experiments we found a huge impact of small quantities of impurities on the stability of the solvents. Therefore, we studied further the influence of impurities in the glymes on the cycling behavior of Li-O2 cells, demonstrating the large effect of electrolyte impurities on Li-O2 cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.