Abstract

Most game-theoretic works of Aloha have emphasized investigating Nash equilibria according to the system state represented by the number of network users and their decisions. In contrast, we focus on the possible change of nodes’ utility state represented by delay constraint and decreasing utility over time. These foregone changes of nodes’ state are more likely to instigate selfish behaviors in networking environments. For such environment, in this paper, we propose a repeated Bayesian slotted Aloha game model to analyze the selfish behavior of impatient users. We prove the existence of Nash equilibrium mathematically and empirically. The proposed model enables any type of transmission probability sequence to achieve Nash equilibrium without degrading its optimal throughput. Those Nash equilibria can be used as a solution concept to thwart the selfish behaviors of nodes and ensure the system stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.