Abstract
In this paper, we are concerned with the Vlasov–Poisson–Boltzmann (VPB) system in three-dimensional spatial space without angular cutoff in a rectangular duct with or without physical boundary conditions. Near a local Maxwellian with macroscopic quantities given by rarefaction wave solution of one-dimensional compressible Euler equations, we establish the time-asymptotic stability of planar rarefaction wave solutions for the Cauchy problem to VPB system with periodic or specular-reflection boundary condition. In particular, we successfully introduce physical boundaries, namely, specular-reflection boundary, to the models describing wave patterns of kinetic equations. Moreover, we treat the non-cutoff collision kernel instead of the cutoff one. As a simplified model, we also consider the stability and large time behavior of the rarefaction wave solution for the Boltzmann equation.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have