Abstract

The stability of Pt nanoparticles (NPs) supported on ultrathin SiO(2) films on Si(111) was investigated in situ under H(2) and O(2) (0.5 Torr) by high-pressure X-ray photoelectron spectroscopy (HP-XPS) and ex situ by atomic force microscopy (AFM). No indication of sintering was observed up to 600 °C in both reducing and oxidizing environments for size-selected Pt NPs synthesized by inverse micelle encapsulation. However, HP-XPS revealed a competing effect of volatile PtO(x) desorption from the Pt NPs (~2 and ~4 nm NP sizes) at temperatures above 450 °C in the presence of 0.5 Torr of O(2). Under oxidizing conditions, the entire NPs were oxidized, although with no indication of a PtO(2) phase, with XPS binding energies better matching PtO. The stability of catalytic NPs in hydrogenation and oxidation reactions is of great importance due to the strong structure sensitivity observed in a number of catalytic processes of industrial relevance. An optimum must be found between the maximization of the surface active sites and metal loading (i.e., minimization of the NP size), combined with the maximization of their stability, which, as it will be shown here, is strongly dependent on the reaction environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.