Abstract

Selective hydrogenation of substituted nitroaromatic compounds is an extremely important and challenging reaction. Supported metal catalysts attract much attention in this reaction because the properties of metal nanoparticles (NPs) can be modified by the nature of the support. Herein, the support morphology on the catalytic performance of selective hydrogenation of 3-nitrostyrene to 3-vinylaniline was investigated. Pt NPs supported on octadecahedral α-Fe2 O3 supports with a truncated hexagonal bipyramid shape (Pt/α-Fe2 O3 -O) and rod-shaped α-Fe2 O3 supports (Pt/α-Fe2 O3 -R) were prepared by glycol reduction method. Detailed characterizations reveal that the electronic structure and dispersion of Pt NPs can be modified by the supports. The Pt/α-Fe2 O3 -O catalyst exhibited superior catalytic performance for hydrogenation of 3-nitrostyrene because of its low coordinated Pt sites and the small Pt NPs size, which is benefit from the high-index exposed surfaces of truncated hexagonal bipyramid-shaped α-Fe2 O3 support. The structural evolution during the catalytic reaction was investigated in detail by identical location transmission electron microscopy (IL-TEM) method, which found that the high cycling activity of Pt/α-Fe2 O3 -O catalyst during the cycle experiment results from the stability of Pt NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.