Abstract

In this paper, we establish stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms on metric measure spaces under general volume doubling condition. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cutoff Sobolev inequalities, and Poincar\'e inequalities. In particular, we establish the connection between parabolic Harnack inequalities and two-sided heat kernel estimates, as well as with the H\"older regularity of parabolic functions for symmetric non-local Dirichlet forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.