Abstract
Parabolic Harnack inequalities are one of the most important inequalities in analysis and PDEs, partly because they imply Holder regularity of the solutions of heat equations. Mean value inequalities play an important role in deriving parabolic Harnack inequalities. In this paper, we first survey the recent results obtained in Chen et al. (Stability of heat kernel estimates for symmetric non-local Dirichlet forms, 2016, [15]; Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms, 2016, [16]) on the study of stability of heat kernel estimates and parabolic Harnack inequalities for symmetric jump processes on general metric measure spaces. We then establish the \(L^p\)-mean value inequalities for all \(p\in (0, 2]\) for these processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.