Abstract

We present graphs that satisfy the uniform elliptic Harnack inequality, for harmonic functions, but not the stronger parabolic one, for solutions of the discrete heat equation. It is known that the parabolic Harnack inequality is equivalent to the conjunction of a volume regularity and a L2 Poincare inequality. The first example of graph satisfying the elliptic but not the parabolic Harnack inequality is due to M. Barlow and R. Bass. It satisfies the volume regularity and not the Poincare inequality. We construct another example that does not satisfy the volume regularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.