Abstract

In this research, inverted bulk heterojunction organic solar cells (BHJ OSC) with poly(3-hexylthiophene-2,5-diyl): (6,6)-phenyl C61 butyric acid methyl (P3HT:PCBM) as the active layer were fabricated by a sol-gel spin coating method using flexible PET and non-flexible glass as substrates. The power conversion efficiency (PCE) and the stability of the cells were investigated. According to the results, the non-flexible device showed higher short circuit current (Jsc) as well as open-circuit voltage (Voc) as compared to the flexible one so that 2.52% and 0.67% PCE for non-flexible and flexible cells were obtained, respectively. From the stability point of view, the non-flexible device maintained 51% of its initial efficiency after six weeks in a dark atmosphere, while it was about 19% for the flexible cell after four weeks. The most important reason for the higher PCE with the higher stability in the non-flexible cell can be attributed to its higher shunt resistance (Rsh) and better interlayer connections at the electron collector side.

Highlights

  • Since 1958 when the first organic solar cell (OSC) was fabricated by Calvin, the generation of renewable energy by OSCs has attracted much attention due to its advantages including cost-efficiency, intrinsic flexibility, semi-transparency, light-weight, environment-friendly composition, solution-based fabrication process, and roll-to-roll manufacturing

  • Among the mentioned kinds of OSCs, the maximum power conversion efficiency (PCE) of 17.3% was achieved in a tandem device till date, the BHJ structure is considered a more attractive structure than others due to the 3D interpenetrating network layer of D-A materials, resulting in enhanced p-n junctions in its active layer

  • During the past few years, rapid development on optimizing the active layer of bulk heterojunction organic solar cells (BHJ OSC) has been focused on facile functionalization of small molecule acceptors (SMA) like fullerenes and non-fullerenes with excellent tunability so that a ternary device of non-fullerene SMA with about 16.5% PCE made the BHJ OSC one step closer to industrialization [7,8,9,10,11,12,13,14]

Read more

Summary

Introduction

Since 1958 when the first organic solar cell (OSC) was fabricated by Calvin, the generation of renewable energy by OSCs has attracted much attention due to its advantages including cost-efficiency, intrinsic flexibility, semi-transparency, light-weight, environment-friendly composition, solution-based fabrication process, and roll-to-roll manufacturing. OSCs based on donor (D)−acceptor (A) materials are a kind of third-generation solar cells in which the organic polymer material acts as the light-absorbing layer. They are classified as: (i) organic bulk-heterojunction (BHJ) thin-film solar cells, (ii) organic tandem solar cells, and (iii) organic dye-sensitized solar cells, which makes them fit as a solar power source in space, building, automobile, gadget and memory device application [5,6]. Among the mentioned kinds of OSCs, the maximum power conversion efficiency (PCE) of 17.3% was achieved in a tandem device till date, the BHJ structure is considered a more attractive structure than others due to the 3D interpenetrating network layer of D-A materials, resulting in enhanced p-n junctions in its active layer. During the past few years, rapid development on optimizing the active layer of BHJ OSC has been focused on facile functionalization of small molecule acceptors (SMA) like fullerenes and non-fullerenes with excellent tunability so that a ternary device of non-fullerene SMA with about 16.5% PCE made the BHJ OSC one step closer to industrialization [7,8,9,10,11,12,13,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.