Abstract
We study a simple but compelling model of network of agents interacting via time-dependent communication links. The model finds application in a variety of fields including synchronization, swarming and distributed decision making. In the model, each agent updates his current state based upon the current information received from neighboring agents. Necessary and/or sufficient conditions for the convergence of the individual agents' states to a common value are presented, thereby extending recent results reported in the literature. The stability analysis is based upon a blend of graph-theoretic and system-theoretic tools with the notion of convexity playing a central role. The analysis is integrated within a formal framework of set-valued Lyapunov theory, which may be of independent interest. Among others, it is observed that more communication does not necessarily lead to faster convergence and may eventually even lead to a loss of convergence, even for the simple models discussed in the present paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.