Abstract

We consider McKean–Vlasov stochastic differential equations (MVSDEs), which are SDEs where the drift and diffusion coefficients depend not only on the state of the unknown process but also on its probability distribution. This type of SDEs was studied in statistical physics and represents the natural setting for stochastic mean-field games. We will first discuss questions of existence and uniqueness of solutions under an Osgood type condition improving the well-known Lipschitz case. Then, we derive various stability properties with respect to initial data, coefficients and driving processes, generalizing known results for classical SDEs. Finally, we establish a result on the approximation of the solution of a MVSDE associated to a relaxed control by the solutions of the same equation associated to strict controls. As a consequence, we show that the relaxed and strict control problems have the same value function. This last property improves known results proved for a special class of MVSDEs, where the dependence on the distribution was made via a linear functional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.