Abstract

In this paper, we aim to establish an averaging principle for neutral stochastic functional differential equations driven by G-Lévy processes with non-Lipschitz coefficients. Utilizing the theory of sub-linear expectations, we show that the solutions of the considered stochastic systems can be approximated by the solutions of averaged neutral stochastic functional differential equations driven by G-Lévy processes in the mean square convergence and convergence in the sense of capacity. Finally, we give an example to support our main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.