Abstract

The KP-II equation was derived by Kadmotsev and Petviashvili to explain stability of line solitary waves of shallow water. Recently, Mizumachi proved nonlinear stability of 1-line solitons for exponentially localized perturbations. In this paper, we prove stability of 1-line solitons for perturbations in (1 + x2)−1/2−0H1(ℝ2) and perturbations in H1(ℝ2) ∩ ∂xL2(ℝ2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.