Abstract
In this paper, we formulate and analyze an HTLV/HIV dual infection model taking into consideration the response of Cytotoxic T lymphocytes (CTLs). The model includes eight compartments, uninfected CD4+T cells, latent HIV-infected cells, active HIV-infected cells, free HIV particles, HIV-specific CTLs, latent HTLV-infected cells, active HTLV-infected cells and HTLV-specific CTLs. The HIV can enter and infect an uninfected CD4+T cell by two ways, free-to-cell and infected-to-cell. Infected-to-cell spread of HIV occurs when uninfected CD4+T cells are touched with active or latent HIV-infected cells. In contrast, there are two modes for HTLV-I transmission, (ⅰ) horizontal, via direct infected-to-cell touch, and (ⅱ) vertical, by mitotic division of active HTLV-infected cells. We analyze the model by proving the nonnegativity and boundedness of the solutions, calculating all possible steady states, deriving a set of key threshold parameters, and proving the global stability of all steady states. The global asymptotic stability of all steady states is proven by using Lyapunov-LaSalle asymptotic stability theorem. We performed numerical simulations to support and illustrate the theoretical results. In addition, we compared between the dynamics of single and dual infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.