Abstract

A description of a dislocation-free elastic glass phase in terms of domain walls is developed and used as the basis of a renormalization group analysis of the energetics of dislocation loops added to the system. It is found that even after optimizing over possible paths of large dislocation loops, their energy is still very likely to be positive when the dislocation core energy is large. This implies the existence of an equilibrium elastic glass phase in three-dimensional random field $\mathrm{XY}$ magnets, and a dislocation-free, bond orientationally ordered ``Bragg glass'' phase of vortices in dirty type-II superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.