Abstract

The present paper is concerned with the investigation of the almost sure stability of elastic and viscoelastic systems, when their parameters assume a random wide-band stationary process. The parameters are parametric loads, characteristics of external damping and material viscosity. With the help of Liapunov's direct method, the sufficient condition of the almost sure asymptotic stability for distributed parameter systems with respect to perturbations of initial conditions of an arbitrary form is obtained. It is shown that, in some cases, this condition coincides with a similar condition derived from the assumption that the form of sure and required perturbations coincides with the first eigenfunction of system oscillations. However, an example is given for the stability of a viscoelastic rod, when the perturbations of initial conditions are more dangerous, if their form differs from the first eigenfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.