Abstract
ABSTRACT Dust rings in protoplanetary discs are often observed in thermal dust emission and could be favourable environments for planet formation. While dust rings readily form in gas pressure maxima, their long-term stability is key to both their observability and potential to assist in planet formation. We investigate the stability of the dust ring generated by interactions of a protoplanetary disc with a Neptune-sized planet and consider its possible long-term evolution using the FARGO3D Multifluid code. We look at the onset of the Rossby Wave Instability (RWI) and compare how the addition of dust in a disc can alter the stability of the gas phase. We find that with the addition of dust, the rings generated by planet–disc interactions are more prone to RWI and can cause the gas phase to become unstable. The instability is shown to occur more easily for higher Stokes number dust, as it accumulates into a more narrow ring which triggers the RWI, while the initial dust fraction plays a more minor role in the stability properties. We show that the dusty RWI generates vortices that collect dust in their cores, which could be sites for further planetesimal formation. We conclude that the addition of dust can cause a ring in a protoplanetary disc to become more prone to instability leading to a different long-term evolution compared to gas-only simulations of the RWI.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have