Abstract

This paper is concerned with the study of the nonlinear stability of the contact discontinuity of the Navier-Stokes-Poisson system with free boundary in the case where the electron background density satisfies an analogue of the Boltzmann relation. We especially allow that the electric potential can take distinct constant states at boundary. On account of the quasineutral assumption, we first construct a viscous contact wave through the quasineutral Euler equations, and then prove that such a non-trivial profile is time-asymptotically stable under small perturbations for the corresponding initial boundary value problem of the Navier-Stokes-Poisson system. The analysis is based on the techniques developed in \cite{DL} and an elementary $L^2$ energy method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.