Abstract

Particle formation in fluidized beds is widely applied in an industrial context for the solidification of liquids and size enlargement of granular materials. The two main size-enlargement mechanisms are layering growth and agglomeration. For continuous process configurations with sieve-mill-recycle and layering growth only, the occurrence of undesired self-sustained oscillations in the particle size distribution under certain process conditions is well-known. This contribution investigates the stability of the practically relevant process with additional particle agglomeration by means of a model-based numerical bifurcation analysis. It is shown that the occurrence of stable limit cycles is inhibited by an increased rate of particle agglomeration for a variety of different process conditions and different agglomeration kinetics. These results enhance the understanding of the agglomeration and layering growth dynamics and are relevant for the process design and operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call