Abstract

Synthesis and characterization of biodegradable hydrogels based on collagen modified by addition of synthetic biodegradable copolymer intended for preparation of porous scaffolds for mesenchymal stem cells used for possible implantation to animals with articular surface defects was investigated. The synthetic biodegradable tri-block copolymer used was the block copolymer of polyethylene glycol (PEG), polylactic acid (PLA), polyglycolic acid (PGA) (PEG-PLGA) endcapped with itaconic acid (ITA). The water-soluble carbodiimide and N-hydroxysuccimide system (EDC-NHS) was chosen as the cross-linking agent used to control the rate of hydrogel resorption. Dependence of the physical properties of the prepared hydrogels on the concentration of the EDC-NHS cross-linker, reaction time and concentration of PEG-PLGA-ITA copolymer was examined. Swelling behaviour, thermal stability, surface morphology and degradation rate were also characterized. Based on the obtained results, it can be concluded that increase in concentration of the cross-linking agent, as well as prolonged cross-linking time and increased amount of synthetic copolymer lead to enhanced thermal stability of the gels together with a reduced swelling ratio and degradation rate in saline. The resorption rate of these gels used in preparation of cartilage scaffolds can be controlled over a wide time interval by varying the collagen/(PEG-PLGA-ITA) blend composition or the conditions of the cross-linking reaction.

Highlights

  • The synthetic biodegradable tri-block copolymer used was the block copolymer of polyethylene glycol (PEG), polylactic acid (PLA), polyglycolic acid (PGA) (PEG-PLGA) endcapped with itaconic acid (ITA)

  • The resorption rate of these gels used in preparation of cartilage scaffolds can be controlled over a wide time interval by varying the collagen/(PEG-PLGA-ITA) blend composition or the conditions of the cross-linking reaction

  • Preparation and cross-linking of transparent biodegradable hydrogels based on collagen modified by addition of Polyethylene glycol (PEG)-PLGA-ITA copolymer was investigated

Read more

Summary

Introduction

The synthetic biodegradable tri-block copolymer used was the block copolymer of polyethylene glycol (PEG), polylactic acid (PLA), polyglycolic acid (PGA) (PEG-PLGA) endcapped with itaconic acid (ITA). Based on the obtained results, it can be concluded that increase in concentration of the cross-linking agent, as well as prolonged cross-linking time and increased amount of synthetic copolymer lead to enhanced thermal stability of the gels together with a reduced swelling ratio and degradation rate in saline. Reactive double bonds and carboxyl groups can be added to PEG-PLGA copolymer through addition of itaconic anhydride (ITA).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call