Abstract

The stability of latex particles in the semibatch emulsion polymerization of butyl acrylate (BA) in the presence of 0–10% acrylic acid (AA) was investigated. The amount of coagulum (i.e., large flocs caused by intensive coagulation) can be greatly reduced by an increase in the concentration of sodium lauryl sulfate (SLS) in the monomer emulsion feed. On the other hand, increasing the concentration of SLS in the initial reactor charge can result in an increase in the percentage of the particle volume change (i.e., a measure of the degree of limited flocculation) later in the process. Both the scrap and percentage of the particle volume change increase with an increase in the electrolyte concentration. Both the coagulation and secondary nucleation process can result in a significant deviation from the Novak model. Experimental data also show that latex particles comprising pure BA can lose their stability rapidly at higher total solids content because of the crowding effect. Incorporation of only 5% AA into the emulsion polymers greatly improves the latex stability. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.