Abstract

In the asphalt industry, bituminous emulsions are widely used in road pavement operations and in building/construction processes such as cold mix asphalt and waterproofing processes, respectively. A very important fact to keep in mind is that not all types of bitumen are suitable for the realization of bituminous emulsions. This is largely due to the variation in their chemical nature and the different cracking processes carried out on the bitumen during the fractional distillation process in the petroleum industry. The objective of this study is to identify the underlying causes of the non-emulsionability of bitumen using Nuclear Magnetic Resonance (NMR) and Dynamic Shear Rheology (DSR) analysis. NMR analysis aims at identifying the fundamental chemical components that are responsible for the emulsionability of the bitumen binder and how important their role is in this phenomenon. On the other hand, the DSR analysis is aimed at determining if the rheological (viscoelastic) behavior of bitumen is implicated in its emulsionability. The indications gotten from the data produced by these techniques, enable us as soon as the analyzed bitumen is deemed non-emulsionable to identify what type of additive can be used to modify the bitumen and alleviate its non-emulsionability until a point where its chemical components become ideal for the realization of bituminous emulsions. In this research work, a model bitumen (labelled as Cimar) which is known for its excellently high emulsionability in the production of anionic bituminous emulsions was used as the reference sample. Two bitumens (labelled as Adriatica and Alma) which from preliminary testing were deemed non-emulsionable were alongside the additives selected and subjected to the aforementioned techniques for analysis on their emulsionability. The NMR data obtained allowed the identification of the chemical nature of the components of the analyzed bitumens and the design of the right additive which improves the bitumen and makes it suitable for the preparation of emulsions. In addition to these, a largely uncommon however effective method of acid number determination of bitumen gave indications on an underlying factor which largely influences the emulsionability of bitumen. An aliphatic and an aromatic surfactant were identified thanks to the spectroscopic findings in this study.

Highlights

  • Bitumen is a viscoelastic material derived from the petroleum industry and for this reason its chemical composition is hugely dependent on the initial crude oil and the cracking process carried out on it

  • Before examining the chemical composition of the bitumen, we calculated the acid number of each sample correlating the values obtained to the emulsionability of each bitumen

  • A relatively simple method known as Catalytic Thermometric Titration was used to determine the acid number of the bitumen samples used for this study

Read more

Summary

Introduction

Bitumen is a viscoelastic material derived from the petroleum industry and for this reason its chemical composition is hugely dependent on the initial crude oil and the cracking process carried out on it. It is not miscible with water and this feature is fundamental for the production of emulsions. From a chemico–physical point of view, the emulsification process involves the dispersion of a fluid in another provided that the two are not miscible with each other When this phenomenon occurs, one of the two fluids breaks into drops, while the other exists as a continuous medium. It is possible to stabilize an emulsion with the use of emulsifiers [4,5]

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.